Toward Feedback Control of Densities in Nonlinear Systems

Abhishek Halder

Department of Applied Mathematics University of California, Santa Cruz Santa Cruz, CA 95064

Joint work with Kenneth F. Caluya (UC Santa Cruz)

CDC 2019, Workshop: Uncertainty Synthesis, Nice

Overarching Theme

Systems-control theory for densities

What is density?

Probability Density Fn.

$$\mathbf{x}(t) \in \begin{pmatrix} x \\ y \\ \theta \end{pmatrix} \in \mathcal{X} \equiv \mathbb{R}^2 \times \mathbb{S}^1$$

Probability Density Fn.

 $\rho(\mathbf{x},t): \mathcal{X} \times [0,\infty) \mapsto \mathbb{R}_{\geq 0}$

$$\int_{\mathcal{X}} \rho \, \mathrm{d} x = 1 \quad \text{ for all } t \in [0, \infty)$$

 $\rho(\mathbf{x},t): \mathcal{X} \times [0,\infty) \mapsto \mathbb{R}_{\geq 0}$

 $\int_{\mathcal{X}} \rho \, \mathrm{d}\mathbf{x} = 1 \quad \text{for all } t \in [0, \infty)$

Why care about densities?

Trajectory flow:

$$d\mathbf{X}(t) = \mathbf{f}(\mathbf{X}, t) dt + \mathbf{g}(\mathbf{X}, t) d\mathbf{w}(t), \quad d\mathbf{w}(t) \sim \mathcal{N}(0, \mathbf{Q}dt)$$

Density flow:

$$\frac{\partial \rho}{\partial t} = \mathcal{L}_{\text{FP}}(\rho) := -\nabla \cdot (\rho \mathbf{f}) + \frac{1}{2} \sum_{i,j=1}^{n} \frac{\partial^2}{\partial x_i \partial x_j} \left(\left(\mathbf{g} \mathbf{Q} \mathbf{g}^{\mathsf{T}} \right)_{ij} \rho \right)$$

Control Problem

Steer joint state PDF via feedback control over finite time horizon

$$\begin{array}{ll} \underset{u \in \mathcal{U}}{\text{minimize}} & \mathbb{E}\left[\int_{0}^{1} \|u\|_{2}^{2} \, \mathrm{d}t\right] \\ \text{subject to} \\ \mathrm{d}x = f\left(x, u, t\right) \, \mathrm{d}t + g\left(x, t\right) \, \mathrm{d}w, \\ x\left(t = 0\right) \sim \rho_{0}, \quad x\left(t = 1\right) \sim \rho_{1} \end{array}$$

PDFs in Mars Entry-Descent-Landing

Prediction Problem Filtering Problem Control

Predict heating rate uncertainty

PDFs in Mars Entry-Descent-Landing

Prediction Problem

Course Stage Separation Despin Course Balance Mass Jettison Turn to Entry Attitude Peak Nearing International Peak Nearing uncertainty Deploy Parachute Heating uncertainty Chute deployment uncertainty Chute deployment uncertainty Fourced Descent Flyaway Sky Crane Course Stage Separation

Filtering Problem

Supersonic parachute

Predict heating rate uncertainty

Estimate state to deploy parachute

Control Problem

PDFs in Mars Entry-Descent-Landing

Prediction Problem

Predict heating rate uncertainty

Filtering Problem

Supersonic parachute

Estimate state to deploy parachute

was minimizeigh 74 6 An Andreditional safetysonicaspredsthear Smart CMUTE Algerithm point included madiganter Disk Gapi Band its. These similar decelorated and the refer (PD Stocker Meinsteiner is

Control Problem

higher Mach numbers result in increased aerothermal heating of parachute structure, which can reduce material strength; and (3) at Mach numbers above Mach 1.5, DGB parachutes exhibit an instability, known as areal oscillations, which result in multiple partial collapses and violent re-inflations. The chief concern with high Mach number deployments, for parachute deployments in regions where the heating is not a driving factor, is therefore, the increased exposure to areal oscillations.

The Viking parachute system was qualified to deploy between Mach 1.4 and 2.1, and a dynamic pressure between 250 and 700 Pa [1]. However, Mach 2.1 is not a hard limit for successfully operating DBG parachutes at Mars and there is very little flight test data above Mach 2.1 with which to quantify the amount of increased EDL system risk. Figure 3 shows the relevant flight tests and flight experience in the region of the planner MSh parashure deployte While parashute experts agree that higher Mach numbers result in a higher probability of failure, they have different opinions on where the limit should be blaced. For exanipate, Gillis [5] Alls proposel & Align per boundante Mach 2 for parachute aerochypamic decelerators at Mars. However, Cruz [3] places the upper Mach number range south where between two and three. $C^3 E^3 - 2.25$ $4.49^{o}S$ | $137.42^{o}E$ | Gale Crater This presents a challenge for EDL system designers, who EDE wards and risks as-sochedewich a challenge for EDL system designers, who must then weigh the system performance gains and risks as-sochedewich a challenge of the huge of the system performance gains and risks as-sochedewich a challenge of the system performance gains and risks as-sochedewich a challenge of the system performance gains and risks as-sochedewich a challenge of the system performance gains and risks as-sochedewich a challenge of the system performance gains and risks as-sochedewich a challenge of the system performance gains and risks as-sochedewich a challenge of the system performance gains and risks as-sochedewich a challenge of the system performance gains and risks as-sochedewich a challenge of the system performance gains and risks as-sochedewich a challenge of the system performance gains and risks as-sochedewich a challenge of the system performance gains and risks as-sochedewich a challenge of the system performance gains and risks as-sochedewich a challenge of the system performance gains and risks as-sochedewich a challenge of the system performance gains and risks as-sochedewich a challenge of the system performance gains and risks as-sochedewich a challenge of the system performance gains and risks as-sochedewich a challenge of the system performance gains and risks as-sochedewich a challenge of the system performance gains and risks as-sochedewich a challenge of the system performance gains and risks as-sochedewich a challenge of the system performance gains and risks as-sochedewich a challenge of the system performance gains and risks as-sochedewich a challenge of the system performance gains and risks as-sochedewich a challenge of the system performance gains and risks as-sochedewich a challenge of the system performance gains and risks as-sochedewich a challenge of the system performance gains and risks as-sochedewich a challenge of the system performance gains and risks as-sochedewich a challen quantified, probability of parachute failure. It is clear that

quantined, probability of paracticle funct. It is creat that deploying a DGB at Mach 2.5 or 3.0 represents a significant post of probability of the system as a significant post of probability of the system as a significant post of probability of the system (estimated to be somewhere around the system (estimated to be somewhere around to paracticle in the system (estimated to be somewhere around the paracticle in the system (estimated to be somewhere around the paracticle in the system (estimated to be somewhere around the paracticle in the system (estimated to be somewhere around the paracticle in the system (estimated to be somewhere around the paracticle in the system (estimated to be somewhere around the paracticle in the system (estimated to be somewhere around the paracticle in the system (estimated to be somewhere around the paracticle in the system (estimated to be somewhere around the paracticle in the system (estimated to be somewhere around the paracticle in the system (estimated to be somewhere around the paracticle in the system (estimated to be somewhere around the paracticle in the system (estimated to be somewhere around the paracticle in the system (estimated to be somewhere around the paracticle in the system (estimated to be somewhere around the paracticle in the system (estimated to be somewhere around the paracticle in the system (estimated to be somewhere around the paracticle in the system (estimated to be somewhere around the paracticle in the system (estimated to be somewhere around the paracticle in the system (estimated to be somewhere in the system (estimated to be somewhere around the paracticle in the system (estimated to be somewhere around the paracticle in the system (estimated to be somewhere around the paracticle in the system (estimated to be somewhere around the paracticle in the system (estimated to be somewhere around the paracticle in the system (estimated to be somewhere around the paracticle in the system (estimated to be somewhere around the paracticle in t

Steer state PDF to achieve desired landing footprint accuracy

have had to rely on proxy measurements of other states in order to infer whether or not conditions were safe for deploying Solving prediction problem as Wasserstein gradient flow

What's New?

Infinite dimensional variational recursion:

Geometric Meaning of Gradient Flow

Gradient Flow in ${\mathcal X}$	Gradient Flow in $\mathcal{P}_2(\mathcal{X})$
$\frac{\mathrm{d}\boldsymbol{x}}{\mathrm{d}t} = -\nabla\varphi(\boldsymbol{x}), \boldsymbol{x}(0) = \boldsymbol{x}_0$	$rac{\partial ho}{\partial t} = - abla^W \Phi(ho), ho(oldsymbol{x}, 0) = ho_0$
Recursion:	Recursion:
$\begin{aligned} \mathbf{x}_{k} &= \mathbf{x}_{k-1} - h \nabla \varphi(\mathbf{x}_{k}) \\ &= \operatorname*{arg min}_{\mathbf{x} \in \mathcal{X}} \left\{ \frac{1}{2} \ \mathbf{x} - \mathbf{x}_{k-1} \ _{2}^{2} + h \varphi(\mathbf{x}) \right\} \\ &=: \operatorname{prox}_{h \varphi}^{\ \cdot \ _{2}}(\mathbf{x}_{k-1}) \end{aligned}$	$\rho_{k} = \rho(\cdot, t = kh)$ = $\arg \min_{\rho \in \mathcal{P}_{2}(\mathcal{X})} \left\{ \frac{1}{2} W^{2}(\rho, \rho_{k-1}) + h \Phi(\rho) \right\}$ =: $\operatorname{prox}_{h\Phi}^{W^{2}}(\rho_{k-1})$
Convergence:	Convergence:
$oldsymbol{x}_k ightarrow oldsymbol{x}(t=kh) ext{ as } h\downarrow 0$	$ ho_k ightarrow ho(\cdot, t = kh)$ as $h \downarrow 0$
arphi as Lyapunov function:	Φ as Lyapunov functional:
$rac{\mathrm{d}}{\mathrm{d}t}arphi = - \parallel abla arphi \parallel_2^2 \ \le \ 0$	$rac{\mathrm{d}}{\mathrm{d}t}\Phi = -\mathbb{E}_{ ho}igg[\left\ abla rac{\delta \Phi}{\delta ho} ight\ _2^2 igg] \ \leq \ 0$

Geometric Meaning of Gradient Flow

Uncertainty propagation via point clouds

No spatial discretization or function approximation

$$\psi \quad \text{Discrete Primal Formulation} \\ \varrho_{k} = \arg\min_{\varrho} \left\{ \min_{\boldsymbol{M} \in \Pi(\varrho_{k-1}, \varrho)} \frac{1}{2} \langle \boldsymbol{C}_{k}, \boldsymbol{M} \rangle + h \langle \psi_{k-1} + \beta^{-1} \log \varrho, \varrho \rangle \right\}$$

Recursion on the Cone

$$\mathbf{y} = e^{\frac{\boldsymbol{\lambda}_0^*}{\epsilon}h} \left| \quad \mathbf{z} = e^{\frac{\boldsymbol{\lambda}_1^*}{\epsilon}h}\right|$$

Coupled Transcendental Equations in y and z

$$\begin{split} \mathbf{\Gamma}_{k} &= e^{\frac{-\mathbf{C}_{k}}{2\epsilon}} \longrightarrow \\ \mathbf{\mathcal{Q}}_{k-1} \longrightarrow \\ \boldsymbol{\xi}_{k-1} &\stackrel{e^{-\beta\psi_{k-1}}}{\longrightarrow} \\ \end{split} \qquad \begin{array}{c} \mathbf{y} \odot \mathbf{\Gamma}_{k}^{\mathsf{Z}} = \mathbf{\mathcal{Q}}_{k-1} \\ \mathbf{z} \odot \mathbf{\Gamma}_{k}^{\mathsf{T}} \mathbf{y} = \boldsymbol{\xi} \underset{k-1}{\odot} \mathbf{z}^{-\beta\epsilon/2h} \end{array} \longrightarrow \mathbf{\mathcal{Q}}_{k} = \mathbf{z} \odot \mathbf{\Gamma}_{k}^{\mathsf{T}} \mathbf{y} \\ \mathbf{z} \odot \mathbf{\Gamma}_{k}^{\mathsf{T}} \mathbf{y} = \boldsymbol{\xi} \underset{k-1}{\odot} \mathbf{z}^{-\beta\epsilon/2h} \end{split}$$

Theorem: Consider the recursion on the cone $\mathbb{R}_{\geq 0}^n \times \mathbb{R}_{\geq 0}^n$ $\boldsymbol{y} \odot (\boldsymbol{\Gamma}_k \boldsymbol{z}) = \boldsymbol{\varrho}_{k-1}, \quad \boldsymbol{z} \odot (\boldsymbol{\Gamma}_k^\top \boldsymbol{y}) = \boldsymbol{\xi}_{k-1} \odot \boldsymbol{z}^{-\frac{\beta\epsilon}{h}},$ Then the solution $(\boldsymbol{y}^*, \boldsymbol{z}^*)$ gives the proximal update $\boldsymbol{\varrho}_k = \boldsymbol{z}^* \odot (\boldsymbol{\Gamma}_k^\top \boldsymbol{y}^*)$

Proximal Prediction: 2D Linear Gaussian

Proximal Prediction: Nonlinear Non-Gaussian

Computational Time: Nonlinear Non-Gaussian

Proximal Prediction: Satellite in Geocentric Orbit

Here, $\mathcal{X} \equiv \mathbb{R}^6$

$$\begin{pmatrix} \mathrm{d}x \\ \mathrm{d}y \\ \mathrm{d}z \\ \mathrm{d}v_x \\ \mathrm{d}v_y \\ \mathrm{d}v_z \end{pmatrix} = \begin{pmatrix} v_x \\ v_y \\ -\frac{\mu x}{r^3} + (f_x)_{\mathsf{pert}} - \gamma v_x \\ -\frac{\mu y}{r^3} + (f_y)_{\mathsf{pert}} - \gamma v_y \\ -\frac{\mu z}{r^3} + (f_z)_{\mathsf{pert}} - \gamma v_z \end{pmatrix} \mathrm{d}t + \sqrt{2\beta^{-1}\gamma} \begin{pmatrix} 0 \\ 0 \\ 0 \\ \mathrm{d}w_1 \\ \mathrm{d}w_2 \\ \mathrm{d}w_3 \end{pmatrix},$$

$$\begin{pmatrix} f_x \\ f_y \\ f_z \end{pmatrix}_{\text{pert}} = \begin{pmatrix} s\theta \ c\phi \ c\theta \ c\phi \ -s\phi \\ s\theta \ s\phi \ c\theta \ s\phi \ c\phi \\ c\theta \ -s\theta \ 0 \end{pmatrix} \begin{pmatrix} \frac{k}{2r^4} \left(3(s\theta)^2 - 1\right) \\ -\frac{k}{r^5}s\theta \ c\theta \\ 0 \end{pmatrix}, k := 3J_2 R_{\text{E}}^2, \mu = \text{constant}$$

Computational Time: Satellite in Geocentric Orbit

Details on Proximal Prediction

Extensions: mean-field models for nonlocal interaction, state-dependent diffusions

Publications:

— K.F. Caluya, and A.H., Proximal Recursion for Solving the Fokker-Planck Equation, ACC 2019.

— K.F. Caluya, and A.H., Gradient Flow Algorithms for Density Propagation in Stochastic Systems, *IEEE Trans. Automatic Control* 2020, doi: <u>10.1109/TAC.2019.2951348</u>.

Git repo: github.com/kcaluya/UncertaintyPropagation

Solving density control as Wasserstein gradient flow

Finite Horizon Feedback Density Control

Finite Horizon Feedback Density Control

Necessary conditions for optimality: coupled nonlinear PDEs (FPK + HJB)

$$\frac{\partial \rho^{\text{opt}}}{\partial t} + \nabla \cdot \left(\rho^{\text{opt}} \left(f + \boldsymbol{B}(t)^{\mathsf{T}} \nabla \psi \right) \right) = \epsilon \mathbf{1}^{\mathsf{T}} \left(\boldsymbol{D}(t) \odot \text{Hess} \left(\rho^{\text{opt}} \right) \right) \mathbf{1},$$

$$\frac{\partial \psi}{\partial t} + \frac{1}{2} \| \boldsymbol{B}(t)^{\mathsf{T}} \nabla \psi \|_{2}^{2} + \langle \nabla \psi, \boldsymbol{f} \rangle = -\epsilon \langle \boldsymbol{D}(t), \text{Hess}(\psi) \rangle$$

Boundary conditions:

Optimal control:

$$\rho^{\text{opt}}(x,0) = \rho_0(x), \quad \rho^{\text{opt}}(x,1) = \rho_1(x)$$

 $\boldsymbol{u}^{\text{opt}}(\boldsymbol{x},t) = \boldsymbol{B}(t)^{\mathsf{T}} \nabla \boldsymbol{\psi}$

Feedback Synthesis via the Schrödinger System

Schrödinger's (until recently) forgotten papers:

Sur la théorie relativiste de l'électron et l'interprétation de la mécanique quantique

E. SCHRÖDINGER

I. — Introduction

J'ai l'intention d'exposer dans ces conférences diverses idées concernant la mécanique quantique et l'interprétation qu'on en donne généralement à l'heure actuelle ; je parlerai principalement de la théorie quantique relativiste du mouvement de l'électron. Autant que nous pouvons nous en rendre compte aujourd'hui, il semble à peu près sûr que la mécanique quantique de l'électron, sous sa forme idéale, *que nous ne possédons pas encore*, doit former un jour la base de toute la physique. A cet intérêt tout à fait général, s'ajoute, ici à Paris, un intérêt particulier : vous savez tous que les bases de la théorie moderne de l'électron ont été posées à Paris par votre célèbre compatriote Louis de BROGLIE.

Hopf-Cole transform: $(\rho^{\text{opt}}, \psi) \mapsto (\varphi, \hat{\varphi})$

$$\begin{split} \varphi\left(\boldsymbol{x},t\right) &= \exp\left(\frac{\psi\left(\boldsymbol{x},t\right)}{2\epsilon}\right),\\ \hat{\varphi}\left(\boldsymbol{x},t\right) &= \rho^{\mathrm{opt}}\left(\boldsymbol{x},t\right)\exp\left(-\frac{\psi\left(\boldsymbol{x},t\right)}{2\epsilon}\right), \end{split}$$

Optimal controlled joint state PDF: $\rho^{\text{opt}}(x,t) = \hat{\varphi}(x,t)\varphi(x,t)$

Optimal control: $u^{\text{opt}}(x,t) = 2\epsilon B(t)^{\top} \nabla \log \varphi(x,t)$

Feedback Synthesis via the Schrödinger System

2 coupled nonlinear PDEs \rightarrow boundary-coupled linear PDEs!!

$$\frac{\partial \hat{\varphi}}{\partial t} = -\nabla \cdot (\hat{\varphi} f) + \epsilon \mathbf{1}^{\top} (\mathbf{D}(t) \odot \operatorname{Hess} (\hat{\varphi})) \mathbf{1}, \ \varphi_0 \hat{\varphi}_0 = \rho_0,$$

forward Kolmogorov PDE
$$\frac{\partial \varphi}{\partial t} = -\langle \nabla \varphi, f \rangle - \epsilon \langle \mathbf{D}(t), \operatorname{Hess} (\varphi) \rangle, \qquad \varphi_1 \hat{\varphi}_1 = \rho_1.$$

backward Kolmogorov PDE

Wasserstein proximal algorithm \rightarrow fixed point recursion over $(\hat{\varphi}_0, \varphi_1)$

→ (Contractive in Hilbert metric)

— Y. Chen, T.T. Georgiou, and M. Pavon, Entropic and displacement interpolation: a computational approach using the Hilbert metric, *SIAM J. Applied Mathematics*, 2016.

Feedback Density Control: Zero Prior Dynamics

Feedback Density Control: LTI Prior Dynamics

Feedback Density Control: Nonlinear Prior Dyn.

How to solve the Schrödinger System with nonlinear drift?

— No analytical handle on the transition kernel

— The backward Kolmogorov PDE cannot be written as Wasserstein gradient flow

Feedback Density Control: Nonlinear Prior Dyn.

How to solve the Schrödinger System with nonlinear drift?

— No analytical handle on the transition kernel

— The backward Kolmogorov PDE cannot be written as Wasserstein gradient flow

Can we exploit *some* structural nonlinearities in practice?

Gradient drift: $d\mathbf{x} = \{-\nabla V(\mathbf{x}) + \mathbf{u}(\mathbf{x}, t)\} dt + \sqrt{2\epsilon} dw$ Assume: $\mathbf{x} \in \mathbb{R}^n$, $V \in C^2(\mathbb{R}^n)$ $\begin{pmatrix} d\boldsymbol{\xi} \\ d\boldsymbol{\eta} \end{pmatrix} = \begin{pmatrix} \boldsymbol{\eta} \\ -\nabla_{\boldsymbol{\xi}} V(\boldsymbol{\xi}) - \kappa \boldsymbol{\eta} + \boldsymbol{u}(\boldsymbol{x}, t) \end{pmatrix} dt + \sqrt{2\epsilon\kappa} \begin{pmatrix} \boldsymbol{0}_{m \times m} \\ \boldsymbol{I}_{m \times m} \end{pmatrix} d\boldsymbol{w}$ Mixed conservative -dissipative drift: Assume: $\boldsymbol{\xi}, \boldsymbol{\eta} \in \mathbb{R}^m, \boldsymbol{x} := (\boldsymbol{\xi}, \boldsymbol{\eta})^\top \in \mathbb{R}^n, n = 2m, V \in$ $C^{2}(\mathbb{R}^{m})$, inf $V > -\infty$, Hess (V) unif. bounded

Feedback Density Control: Gradient Drift

Theorem

For $t \in [0, 1]$, let s := 1 - t.

Define the change-of-variables $\varphi \mapsto q \mapsto p$ as

$$q(\mathbf{x}, s) := \varphi(\mathbf{x}, s) = \varphi(\mathbf{x}, 1 - t),$$
$$p(\mathbf{x}, s) := q(\mathbf{x}, s) \exp\left(-V(\mathbf{x})/\epsilon\right).$$

Then the pair $(\hat{\varphi}, p)$ solves

$$\begin{aligned} \frac{\partial \hat{\varphi}}{\partial t} &= \nabla \cdot (\hat{\varphi} \nabla V) + \epsilon \Delta \hat{\varphi}, \quad \hat{\varphi} (x, 0) = \hat{\varphi}_0(x), \\ \frac{\partial p}{\partial s} &= \nabla \cdot (p \nabla V) + \epsilon \Delta p, \quad p (x, 0) = \varphi_1(x) \exp \left(-\frac{V(x)}{\epsilon}\right). \end{aligned}$$

Feedback Density Control: Mixed Conservative-Dissipative Drift

Theorem

For $t \in [0, 1]$, let s := 1 - t. Also, let $\vartheta := -\eta$.

Define the change-of-variables $\varphi \mapsto q \mapsto \widetilde{p} \mapsto p$ as

$$q(\boldsymbol{\xi},\boldsymbol{\eta},s) := \varphi(\boldsymbol{\xi},\boldsymbol{\eta},s) = \varphi(\boldsymbol{\xi},\boldsymbol{\eta},1-t),$$

$$\widetilde{p}(\boldsymbol{\xi},-\boldsymbol{\eta},s) := q(\boldsymbol{\xi},\boldsymbol{\eta},s) \exp\left(-\frac{1}{\epsilon}\left(\frac{1}{2}\|\boldsymbol{\eta}\|_{2}^{2}+V(\boldsymbol{\xi})\right)\right),$$

$$p\left(\boldsymbol{\xi},\boldsymbol{\vartheta},s\right) := \widetilde{p}(\boldsymbol{\xi},-\boldsymbol{\eta},s).$$

Then the pair $(\hat{\varphi}, p)$ solves

$$\begin{split} \frac{\partial \hat{\varphi}}{\partial t} &= -\langle \eta, \nabla_{\xi} \hat{\varphi} \rangle + \nabla_{\eta} \cdot \left(\hat{\varphi} \left(\nabla_{\xi} V \left(\xi \right) + \kappa \eta \right) \right) + \epsilon \kappa \Delta_{\eta} \hat{\varphi}, \\ \frac{\partial p}{\partial s} &= -\langle \vartheta, \nabla_{\xi} p \rangle + \nabla_{\vartheta} \cdot \left(p \left(\nabla_{\xi} V \left(\xi \right) + \kappa \vartheta \right) \right) + \epsilon \kappa \Delta_{\vartheta} p, \\ \hat{\varphi} \left(\xi, \eta, 0 \right) &= \hat{\varphi}_{0}(\xi, \eta), \\ p(\xi, \vartheta, 0) &= \varphi_{1}(\xi, -\vartheta) \exp \left(-\frac{1}{\epsilon} \left(\frac{1}{2} \| \vartheta \|_{2}^{2} + V(\xi) \right) \right). \end{split}$$

Feedback Density Control via Wasserstein prox.

Design proximal recursions over discrete time pair:

 $(t_{k-1}, s_{k-1}) := ((k-1)\tau, (k-1)\sigma), k \in \mathbb{N}$, and τ, σ are step-sizes.

The recursions are of the form:

$$\begin{pmatrix} \hat{\phi}_{t_{k-1}} \\ \varpi_{s_{k-1}} \end{pmatrix} \mapsto \begin{pmatrix} \hat{\phi}_{t_k} \\ \varpi_{s_k} \end{pmatrix} := \begin{pmatrix} \arg \inf \frac{1}{2} d^2 \left(\hat{\phi}_{t_{k-1}}, \hat{\phi} \right) + \tau F(\hat{\phi}) \\ \varphi \in \mathcal{P}_2(\mathbb{R}^n) \\ \arg \inf \frac{1}{2} d^2 \left(\varpi_{s_{k-1}}, \varpi \right) + \sigma F(\varpi) \end{pmatrix}$$

Consistency guarantees:

$$\hat{\phi}_{t_{k-1}}(\boldsymbol{x}) \to \hat{\varphi}(\boldsymbol{x}, t = (k-1)\tau) \quad \text{in} \quad L^1(\mathbb{R}^n) \quad \text{as} \quad \tau \downarrow 0,$$
 $\mathcal{O}_{s_{k-1}}(\boldsymbol{x}) \to p(\boldsymbol{x}, s = (k-1)\sigma) \quad \text{in} \quad L^1(\mathbb{R}^n) \quad \text{as} \quad \sigma \downarrow 0.$

Details:

— K.F. Caluya, and A.H., Wasserstein Proximal Algorithms for the Schrödinger Bridge Problem: Density Control with Nonlinear Drift, *arXiv* 1912.01244.

Feedback Density Control: Gradient Drift

Uncontrolled joint PDF evolution:

Optimal controlled joint PDF evolution:

Feedback Density Control: Mixed Conservative-Dissipative Drift

0

-16

 $u^{
m opt}$

-12

-8

-4

Density Control with Det. Path Constraints

* Ongoing work

Density Control with Feedback Linearizable Dyn.

Setting:

For
$$x \in \mathbb{R}^n$$
, $u \in \mathbb{R}^m$, and given ρ_0 , ρ_1 , consider

$$\inf_{u \in \mathcal{U}} \mathbb{E}\left\{\int_0^1 \frac{1}{2} ||u(x,t)||_2^2 dt\right\},$$
subject to $\dot{x} = f(x) + G(x)u$,
 $x(t = 0) \sim \rho_0(x) \quad x(t = 1) \sim \rho_1(x)$,

with (f(x), G(x)) feedback linearizable, i.e., there exists a triple $(\delta(x), \Gamma(x), \tau(x))$ such that

$$egin{aligned} & (
abla au \, (f(x) + G(x) \delta(x)))_{x = au^{-1}(z)} = Az, \ & (
abla au \, (G(x) \Gamma(x)))_{x = au^{-1}(z)} = B, \end{aligned}$$

where (A, B) is controllable. So, $(x, u) \mapsto (z, v)$ with $\dot{z} = Az + Bv$, $u = \delta(x) + \Gamma(x)v$.

Density Control with Feedback Linearizable Dyn.

Main idea:

Push-forward the endpoint PDFs via diffeomorphism $\tau: \mathcal{X} \mapsto \mathcal{Z}$

$$\sigma_i(\boldsymbol{z}) := \boldsymbol{\tau}_{\sharp} \rho_i = \frac{\rho_i(\boldsymbol{\tau}^{-1}(\boldsymbol{z}))}{|\det(\nabla_{\boldsymbol{x}} \boldsymbol{\tau}_{\boldsymbol{x}=\boldsymbol{\tau}^{-1}(\boldsymbol{z})})|}, \quad i \in \{0, 1\}.$$

Define maps $\delta_{\tau} := \delta \circ \tau^{-1}$, $\Gamma_{\tau} := \Gamma \circ \tau^{-1}$

Rewrite the problem in feedback linearized coordinates as

$$\begin{array}{ll} \underset{\sigma,v}{\text{minimize}} & \int_{0}^{1} \int_{\mathcal{Z}} \frac{1}{2} \mathcal{L}(z,v) \sigma(z,t) \, \mathrm{d}z \mathrm{d}t, \\ \text{subject to} & \frac{\partial \sigma}{\partial t} + \nabla_{z} \cdot \left((Az + Bv) \sigma \right) = 0 \\ \sigma(z,t=0) = \sigma_{0}, \quad \sigma(z,t=1) = \sigma_{1}, \end{array}$$

where $\mathcal{L}(z, v) := \|\delta_{\tau}(z) + \Gamma_{\tau}(z)v\|_2^2$.

Density Control with Feedback Linearizable Dyn.

Optimality:

Optimal control: $v^{\text{opt}}(z,t) = (\Gamma_{\tau}^{\top}\Gamma_{\tau}(z))^{-1}B^{\top}\nabla_{z}\psi - \Gamma_{\tau}^{-1}(z)\delta_{\tau}(z)$

HJB:

$$\frac{\partial \psi}{\partial t} + \langle \nabla_z \psi, Az \rangle - \langle \nabla_z \psi, B\Gamma_{\tau}^{-1}(z) \delta_{\tau}(z) \rangle + \frac{1}{2} \langle \nabla_z \psi, B\left(\Gamma_{\tau}^{\top}(z)\Gamma_{\tau}(z)\right)^{-1} B^{\top} \nabla_z \psi \rangle = 0.$$

Details:

— K.F. Caluya, and A.H., Finite Horizon Density Control for Static State Feedback Linearizable Systems, *arXiv* 1904.02272.

— K.F. Caluya, and A.H., Finite Horizon Density Steering for Multi-input State Feedback Linearizable Systems, *arXiv* 1909.12511.

Take Home Message

Emerging system-control theory for densities

Wasserstein gradient flow: one unifying framework for the prediction, estimation, and feedback control

Feedback density control theory: many recent progress, much remains to be done

Several applications: controlling biological and robotic swarm, process control

Thank You

