
Path Planning in Unknown Environment by 
Optimal Transport on Graph

Haomin Zhou
School of Mathematics, Georgia Tech

Collaborators: Magnus Egerstedt (ECE, GT), Haoyan Zhai (Math, GT)

Partially Supported by NSF, ONR



Optimal Path In Dynamical Environment

Method of Evolving Junctions (MEJ) (Automatica 2017, 
IJRR 2017, with Chow-Egerstedt-Li-Lu, ).



Multi-Agent System

The robots have limited detection ranges.  
Path generated by Intermittent Diffusion (with Egerstedt-Frederick). 



Path Exploration in Unknown Environment

The robot has a limited detection range.



Path Exploration in Unknown Environment

The robots have limited detection ranges.



Outline

Path planning in unknown environments 

Optimal transport on finite graphs 

General control with unknown constraints 



Path Planning in Unknown Environments

Dynamical Path Planning: Generalization

For a complete control system (⌦,U , f ) that is completely controllable in
time T , with U being a compact set of Rn and f being a Lipschitz
function, we let (⌦, g) be a d dimensional compact Riemannian manifold.
There exists a distance function d(·, ·) induced by g(·, ·). We want to find
u 2 U

[0,T ) such that

�̇(t) = f (�(t), u(t)),

�(0) = x0, �(T ) = xf ,

�(�(t)) � 0 for all t 2 [0,T ],

 ̂(�(t), �, t) � 0 for all t 2 [0,T ],

where

 ̂(x , t, �) =

⇢
 (x) if d(x , �(⌧))  R for some ⌧  t

0 otherwise
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–

Problem: Find a continuous curve �(t) in ⌦ ⇢ Rd,
such that
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—————————————————————–
�(x)  0 are the known constraints,
 (x)  0 are the unknown obstacles.
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Constraints are expressed in terms of level set functions.



Challenges

• Local traps and 
replanning,  

• Narrow pathways, 

• Collisions, 

• Communications, 

• Computational cost in 
higher dimensions.



Existing methods

• Bug family: Bug0, Bug1, Bug2, TangentBug, DistBug, … 

• Probabilistic Road Map (PRM), 

• Rapid-growing Random Tree (RRT), RRT* (dynamical version), 

• Artificial Potential Field (APF), 

• Graph based methods (Dijkstra style): A*, D, D*, focus-D*, D*-
lite and more, 

• Genetic algorithm, Neural network, fuzzy logic, fast marching 
tree, and many more.

The convergence for many of the methods, if exists, is asymptotic.



Our Algorithm

Idea: potential guided, tree based 2-layer iterations. 

3 main steps: 

Tree generating,  

Path finding, 

Environment updating.

Potential is used to ensure convergence, and Trees are 
used to control the computation cost in high dimensions.



Properties of Our AlgorithmDynamical Path Planning: Path Finding

Proposition

There exists a unique path from initial to target configurations over the

generated graph G . And if the path is denoted by {xi}
q
i=0 ⇢ V with

x0 ! x1 ! · · · ! xq = xf , where xi is the ancestor of xi+1.

We use back tracing to find the path:
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Convergence Analysis

Dynamical Path Planning: Convergence Analysis

For graph generation, providing that the configuration space is time T

controllable, and � is the feasible path set, we have the following:

Theorem

Assuming that

sup
�2�

inf
t2[0,T ]

sup
r�0

{r : B(�(t), r) \O = ;} = L > 0,

and

l <
2L
p
n
,

where n is the dimension of ⌦ and l is the step size of the graph

generation, the graph generation terminates in finite iterations. The

generated graph G = (V ,E ) is connected and has a finite number of

vertices |V | < 1 with xs , xt 2 V .
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Convergence Analysis

Dynamical Path Planning: Convergence Analysis

Also the path planning procedure is convergent in finite steps:

Theorem

Let {�i}mi=1 be the paths produced by the algorithm with {Ti}
m
i=1 being

the stopping time set. If we use the same assumptions in the previous

theorem and

sup
i

inf
✏

n
✏ : B(�i (Ti ), ✏) \O

Ti
c 6= ;

o
= q < R ,

holds, then m < 1.
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The outer iteration stops in finite steps.

Our algorithm stops in finite steps.



Examples

A 10-robot (20 dimensional) example. The entire computation 
is within 1 minute in Matlab on a laptop.



Examples

A 3-robot example. Most area is not explored.



Summary of the Properties

• The algorithm is deterministic, stops in finite steps, 

• Guarantees to find a feasible path if there exists one, 

• If the algorithm stops without returning a path, there isn’t one 
that can be identified by the step size. 

• The growing rate for the tree is linear, not exponential, w.r.t. 
the dimension of the configuration space, 

• Explores only a limited part of the configuration space.

The method is inspired by optimal transport on trees with 
intermittent diffusion. 



Limited Exploration Region

Dynamical Path Planning: Relation to FPE

We can bound the complete path by a set R determined by FPE.

Theorem

Given any known

environment, the generated

graph G is bounded by R,

produced by evolution of

Fokker-Planck equation in

the same environment:

G ⇢

[

x2R
Box(x , l).
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The tree generation contains 2 phases:  
projected gradient and diffusion. 



Limited Exploration Region

The evolution of Fokker-Planck equation on graph has intermittent 
diffusion (diffusion coefficient is turned on-and-off). 

Dynamical Path Planning: Relation to FPE

Theorem

Assuming that the robots only stop

on node points with assumptions in

previous theorems and R > L, the

complete path � generated by the

algorithm in the unknown

environment satisfies

� ⇢

[

x2R
Box(x , l),

where R is produced with the full

knowledge of the environment.
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Optimal Transport

•Optimal Transport:  Monge (1781),  Kantorovich (1942), Otto, Kinderlehrer,  
Villani, McCann, Carlen, Lott, Strum, Gangbo, Jordan, Evans, Brenier, Benamou, 
Caffarelli, Figalli, and many many more, 

•Related to linear programming, manifold learning, image processing, game 
theory, …

Benamou-Brenier Formula

W2(⇢
0, ⇢1) = inf

v
(

Z 1

0

Z

RN

v(t, x)2⇢(t, x)dxdt)
1
2

s.t.

@⇢

@t
+r · (v⇢) = 0, ⇢(0, x) = ⇢0, ⇢(1, x) = ⇢1.

Part II: What is optimal transport?

Wasserstein metric

W2(⇢
0, ⇢1) := inf

v(t,x)

� Z 1

0

Z

Rd
v(t, x)2⇢(t, x)dxdt

� 1
2 ,

where the infimum runs over all vector field v(t, x) with

@⇢

@t
+r · (⇢v) = 0, ⇢(0) = ⇢0, ⇢(1) = ⇢1.

Optimal transport theory in continuous state is well studied.

My goal: Further develop the optimal transport on finite graphs.

Wuchen Li (Georgia Institute of Technology)Dissertation: A study of stochastic differential equations and Fokker-Planck equations with applicationsPhD Defense 2016 15 / 42

2-Wasserstein distance: the minimal cost, with respect to the
square of Euclidean distance, to move from ⇢0 to ⇢1.



•Randomly perturbed gradient system:

•Time evolution of the probability density function, the Fokker-Planck 
equation:

•Invariant distribution at steady state -- Gibbs distribution:  

⇥t(x, t) = ⇥ · (⇥⇥(x)⇥(x, t)) + ��⇥(x, t)

⇢⇤(x) =
1

K
e� (x)/� K =

Z

RN

e� (x)/� dx

Fokker-Planck Equations

dx = �r (x)dt+
p

2�dWt, x 2 RN



•Free energy

•Potential

•Gibbs-Boltzmann Entropy

•Fokker-Planck equation is the gradient flow of the free energy under 
2-Wasserstein metric on the manifold of probability space. 

•Gibbs distribution is the global attractor of the gradient system. 

F (⇢) = U(⇢)� �S(⇢)

U(⇢) =

Z

RN

 (x)⇢(x)dx

S(⇢) = �
Z

RN

⇢(x) log ⇢(x)dx

Free Energy and Fokker-Planck Equations 



Optimal Transport

. . . . . .

Introduction
Main Results

Proof of the Theorems
Examples

Wasserstein Metric (RN)

.

.

X = RN , and µ1, µ2 are Borel probability measures, the 2-Wasserstein distance
is

d2(µ1, µ2) = inf
p∈P(µ1,µ2)

Z

RN×RN
|x − y |2p(dxdy)

where P(µ1, µ2) is the collection of Borel probability measures on Rn × Rn with

marginals µ1 and µ2.

Shui-Nee Chow, Wen Huang, Yao Li, Haomin Zhou Fokker-Planck Equation on Graph with Finite Vertices

Introduction: free energy view

•Free energy

•Potential

•Gibbs-Boltzmann Entropy

•Fokker-Planck equation is the gradient flow of the free energy 
under 2-Wasserstein metric on the manifold of probability space. 

•Gibbs distribution is the global attractor of the gradient system. 

F (⇥) = U(⇥)� �S(⇥)

U(�) =

�

RN

�(x)�(x)dx

S(�) = �
�

RN

�(x) log �(x)dx

Wednesday, March 21, 2012

Introduction: continuous media

•Randomly perturbed gradient system:

•Time evolution of the probability density function, the 
Fokker-Planck equation:

•Invariant distribution at steady state -- Gibbs distribution:  

dx = �⇤�(x)dt +
�

2�dWt, x ⇥ RN

⇥t(x, t) = � · (�⇥(x)⇥(x, t)) + ��⇥(x, t)

�⇥(x) =
1

K
e��(x)/� K =

�

RN

e��(x)/� dx

Wednesday, March 21, 2012

Free Energy SDE

Fokker-Planck Equation
⇢t = r · (r ⇢) + ��⇢ = r · (r( + � log ⇢)⇢)



• Our Goal: establish optimal transport on graphs with finite vertices.

• Why on graphs: Physical space (number of sites or states) is finite, not 
necessary from a spatial discretization such as a lattice.

• Applications: game theory, RNA folding, logistic, chemical reactions, 
machine learning, Markov networks,  numerical schemes, ...

• Mathematics: Graph theory, Mass transport, Dynamical systems, 
Stochastic Processes, PDE’s, ... 

• Many Recent Developments:  Erbar,  Mielke, Mass, Gigli, Ollivier,  Villani, 
Tetali, Fathi, Qian, Carlen, …

Optimal Transport on Finite graphs



Basic Set-ups Motivation: Basic setting

Graph with finite vertices

G = (V ,E ), V = {1, · · · , n}, E is the edge set.

Probability set

P(G ) = {(⇢i )
n
i=1 |

nX

i=1

⇢i = 1, ⇢i � 0}.

Discrete free energy

F(⇢) =
1

2

nX

i=1

nX

j=1

wij⇢i⇢j +
nX

i=1

vi⇢i+�
nX

i=1

⇢i log ⇢i .

Boltzmann-Shannon entropy
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• Common discretizations of continuous fokker-planck equations often lead to 
incorrect results,

• Graphs are not length spaces and many of the essential techniques cannot be used 
anymore,

• The notion of random perturbation (white noise) of a Markov process on discrete 
spaces is not clear.

• Nodes on graphs may have very different neighborhood structures.

Theorem: Any given linear discretization of the continuous equation can be
written as

d�i

dt
=

�

j

((
�

k

ei
jk�k) + ci

j)�j .

Let
A = {� � RN :

�

j

((
�

k

ei
jk�k) + ci

j)e
��j

� = 0}.

Then A is a zero measure set.

Challenges 

Motivation

Question

What is the gradient flow of discrete free energy on probability manifold?

Answer
It depends on the metric of probability manifold. However, the optimal
transport theory can not be applied to discrete settings directly!

Challenges

Graph may not be a length space;

Graph may introduce more complicated neighborhood structures:
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Optimal Transport on Graphs

Discrete 2-Wasserstein distance

W2;F (⇢
0, ⇢1) = inf

v
(

Z 1

0
(v, v)⇢dt)

1
2

where v and ⇢ satisfy

d⇢

dt
+ divG(⇢v) = 0, ⇢(0, x) = ⇢0, ⇢(1, x) = ⇢1.

For any ⇢0, ⇢1 2 P(G), define



Vector Operators on Graphs

Vector field on a graph: v = (vij)(i,j)2E , satisfying vij = �vji

Potential � induced vector field : rG = (�i � �j)(i,j)2E

divG(⇢v) = �(
P

j2N(i) vijg
F
ij(⇢))

n
i=1

Divergence w. r. t. ⇢

Inner product

(v, u)⇢ =
P

(i,j)2E vijuijgFij(⇢)

Definition

Divergence of v on a graph w.r.t ⇢ 2 Po(G )

divG (⇢v) := �
� X

j2N(i)

vijg
F
ij (⇢)

�n
i=1

.

Inner product of v on a graph w.r.t ⇢ 2 Po(G )

(v , v)⇢ :=
X

(i ,j)2E

v
2
ij g

F
ij (⇢).

Here Fi (⇢) =
@
@⇢i

F(⇢) and

g
F
ij (⇢) =

8
><

>:

⇢i if Fi (⇢) > Fj(⇢), j 2 N(i);

⇢j if Fi (⇢) < Fj(⇢), j 2 N(i);
⇢i+⇢j

2 if Fi (⇢) = Fj(⇢), j 2 N(i).
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Discrete Fokker-Planck EquationsGradient flow: Derivation

Theorem 1

For a finite graph G = (V ,E ) and a constant � > 0. The gradient flow of
discrete free energy

F(⇢) =
1

2

nX

i=1

nX

j=1

wij⇢i⇢j +
nX

i=1

vi⇢i + �
nX

i=1

⇢i log ⇢i

on the metric space (Po(G ),W2;F ) is

d⇢i
dt

=
X

j2N(i)

⇢j(Fj(⇢) � Fi (⇢))+ �

X

j2N(i)

⇢i (Fi (⇢) � Fj(⇢))+ (1)

for any i 2 V . Here Fi (⇢) =
@
@⇢i

F(⇢) and (·)+ = max{·, 0}.

We call (1) as the Fokker-Planck equation on graph.
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⇢t = r · (r ⇢) + ��⇢ = r · (r( + � log ⇢)⇢)

Continuous Fokker-Planck equation



Fokker-Planck Equation and Exploring Region

Dynamical Path Planning: Relation to FPE

The graph generation can be separated to two stages: Gradient stage and
Di↵usion stage. Both stages are described by the evolution of the
Fokker-Planck equation:

⇢t(x , t) = div(⇢(x , t)rV (x)) + ��⇢(x , t)

= div(⇢(x , t)r(V (x) + � log ⇢(x , t))).

The discrete version is given as below:

@⇢j
@t

=
⇣ X

k2Nb(j)

(Fk(⇢,�)� Fj(⇢,�))+⇢kdjk�

X

k2Nb(j)

(Fj(⇢,�)� Fk(⇢,�))+⇢jdjk
⌘ 1

(�x)2
,

where Nb(i) is the neighbors of vertex i and

Fi (⇢,�) =
@

@⇢i
F(⇢,�) = V (i) + � log ⇢i .
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In the path planning case, the region is determined by,  

where —————————————-
Fi(⇢,�) = p(i) + � log ⇢i.

<latexit sha1_base64="+y49NWe5/l59mS7Cjxckc5F/7Cc="></latexit> —————————————-
p(i) is the distance to the target.
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—————————————-
� = 0 projected gradient,
� > 0 di↵usion.
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Distance value is not used, only the projected gradient direction is used, 



Fokker-Planck Equation and Exploring Region

A different view point:  
On a generated tree, Fokker-Planck equation selects nodes 

Dynamical Path Planning: Generalization

(a) The Evolved Region (b) The Generated Graph
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General Control Problems
Dynamical Path Planning: Generalization

For a complete control system (⌦,U , f ) that is completely controllable in
time T , with U being a compact set of Rn and f being a Lipschitz
function, we let (⌦, g) be a d dimensional compact Riemannian manifold.
There exists a distance function d(·, ·) induced by g(·, ·). We want to find
u 2 U

[0,T ) such that

�̇(t) = f (�(t), u(t)),

�(0) = x0, �(T ) = xf ,

�(�(t)) � 0 for all t 2 [0,T ],

 ̂(�(t), �, t) � 0 for all t 2 [0,T ],

where

 ̂(x , t, �) =

⇢
 (x) if d(x , �(⌧))  R for some ⌧  t

0 otherwise
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An Example, Path Planning on a Sphere
Dynamical Path Planning: Generalization
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Thank you for your attention!


