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Optimal Path In Dynamical Environment
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Method of Evolving Junctions (MEJ) (Automatica 2017,
IJRR 2017, with Chow-Egerstedt-Li-Lu, ).




Multi-Agent System
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The robots have limited detection ranges.
Path generated by Intermittent Diffusion (with Egerstedt-Frederick).



Path Exploration in Unknown Environment
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The robot has a limited detection range.



Path Exploration in Unknown Environment

The robots have limited detection ranges.



Outline

Path planning in unknown environments

Optimal transport on finite graphs

General control with unknown constraints



Path Planning in Unknown Environments

Problem: Find a continuous curve v(¢) in Q C R?
such that

v(0) = x0,v(T) = xr,
¢(vy(t)) > 0 for all t € [0, T],

V(y(t),~,t) >0 for all t € [0, T,

¢(x) < 0 are the known constraints,
Y(x) < 0 are the unknown obstacles.

A [ ¥(x) ifd(x,v(7)) < R forsome T <t
vl t7) = { 0 otherwise

Constraints are expressed in terms of level set functions.



Challenges

Local traps and
replanning,

Narrow pathways,
Collisions,
Communications,

Computational cost in
higher dimensions.
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Existing methods

« Bug family: BugO, Bug1, Bug?2, TangentBug, DistBug, ...

* Probabilistic Road Map (PRM),

« Rapid-growing Random Tree (RRT), RRT* (dynamical version),
o Artificial Potential Field (APF),

o Graph based methods (Dijkstra style): A*, D, D*, focus-D*, D*-
lite and more,

« Genetic algorithm, Neural network, fuzzy logic, fast marching
tree, and many more.

The convergence for many of the methods, if exists, is asymptotic.



Our Algorithm

|dea: potential guided, tree based 2-layer iterations.
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3 main steps:

- Tree generating,
- Path finding,

- Environment updating.

Potential is used to ensure convergence, and Irees are
used to control the computation cost in high dimensions.



Properties of Our Algorithm

Proposition

There exists a unique path from initial to target configurations over the
generated graph G. And if the path is denoted by {x;}?_, C V with
Xo — X1 — - -+ —» Xg = Xf, where X; is the ancestor of Xj1.

We use back tracing to find the path:
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Convergence Analysis

Assuming that

sup inf sup{r: B(y(t),)NO=0}=L >0,
'yEI' tE[OaT] r20

and
2L

[ < —,
\V/n
where n is the dimension of 2 and | is the step size of the graph
generation, the graph generation terminates in finite iterations. The
generated graph G = (V/, E) is connected and has a finite number of

vertices |V| < oo with xs,x; € V.

The tree generating iteration stops in finite steps.



Convergence Analysis

Let {~i}™ , be the paths produced by the algorithm with {T;}™ ; being
the stopping time set. If we use the same assumptions in the previous
theorem and

su_pirgf {e - B(yi(T:),e)nO i @} =g <R,

/

holds, then m < oc.

The outer iteration stops in finite steps.

Our algorithm stops in finite steps.



Examples
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A 10-robot (20 dimensional) example. The entire computation
s within 1 minute in Matlab on a laptop.



Examples

A 3-robot example. Most area is not explored.



Summary of the Properties

* The algorithm is deterministic, stops in finite steps,
* (Guarantees to find a feasible path if there exists one,

* |f the algorithm stops without returning a path, there isn’'t one
that can be identitied by the step size.

* The growing rate for the tree is linear, not exponential, w.r.t.
the dimension of the configuration space,

* Explores only a limited part of the configuration space.

The method is inspired by optimal transport on trees with
intermittent diffusion.



Limited Exploration Region

Given any known
environment, the generated
graph G is bounded by 'R,
produced by evolution of
Fokker-Planck equation in
the same environment:

G C | ) Box(x,1).
XER

The tree generation contains 2 phases:
projected gradient and diffusion.



Limited Exploration Region
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Assuming that the robots only stop
on node points with assumptions in
previous theorems and R > L, the
complete path v generated by the
algorithm in the unknown
environment satisfies

v C U Box(x, 1),
XER

where R is produced with the full
knowledge of the environment.

The evolution of Fokker-Planck equation on graph has intermittent
diffusion (diffusion coefficient is turned on-and-oft).



Optimal Transport

*Optimal Transport: Monge (1781), Kantorovich (1942), Otto, Kinderlehrer,
Villani, McCann, Carlen, Lott, Strum, Gangbo, Jordan, Evans, Brenier, Benamou,
Caffarelli, Figalli, and many many more,

*Related to linear programming, manifold learning, image processing, game
theory, ...

Benamou-Brenier Formula

Wa(p®, p') = ig}f(/o /RN v(t, ) p(t, x)dxdt)
S.t. /-\/X\‘\ ﬂ\

- T V- (Up) =0, p(O,ZC) — PO, :0(1733) — Pl-

N[

2-Wasserstein distance: the minimal cost, with respect to the
square of Euclidean distance, to move from p° to p!.



Fokker-Planck Equations

*Randomly perturbed gradient system:

dr = =V (z)dt + \/26dW;, x€R"Y

*Time evolution of the probability density function, the Fokker-Planck
equation:

pi(x,t) = V- (VU(z)p(x,t)) + BAp(2, 1)

e[nvariant distribution at steady state -- Gibbs distribution:

1 ~0(a
p () = Ee_qj(x)/ﬁ K = . e~ V@)/P dg



Free Energy and Fokker-Planck Equations

°Free energy F(p)=U(p) — BS(p)

*Potential Up) = -[R{N U(x)p(x)dx

*Gibbs-Boltzmann Entropy
S(p) = — /R _pla)logp(z)dz

*Fokker-Planck equation is the gradient flow of the free energy under
2-Wasserstein metric on the manifold of probability space.

*Gibbs distribution is the global attractor of the gradient system.



Optimal Transport

] Conititnons Foklker-Planck =tochastic
Free Energy Eruation [EH} Dhff: Equation

Gradient Flow of Itd Calculus
2 - Wagserstem
Distance
F(p) =U(p) — BS(p) dz = =V (z)dt + \/20dW;
Free Energy SDE

pt =V - (VUp) + BAp=V-(V(¥ + Blogp)p)
Fokker-Planck Equation



Optimal Transport on Finite graphs

Our Goal: establish optimal transport on graphs with finite vertices.

Why on graphs: Physical space (hnumber of sites or states) is finite, not
necessary from a spatial discretization such as a lattice.

Applications: game theory, RNA folding, logistic, chemical reactions,
machine learning, Markov networks, numerical schemes, ...

Mathematics: Graph theory, Mass transport, Dynamical systems,
Stochastic Processes, PDETs, ...

Many Recent Developments: Erbar, Mielke, Mass, Gigli, Ollivier, Villani,
Tetali, Fathi, Qian, Carlen, ...



Basic Set-ups

Graph with finite vertices
G=(V,E), V={1,---,n}, Eisthe edge set.

Probability set

P(G) ={(pi)i=1 | Y pi=1, pi > 0}.
=1

Discrete free energy

— X > >1 WijPipPj + Z lel+5z Pi Iog Pi-

I].J].

Boltzmann-Shannon entropy



Challenges

* Common discretizations of continuous fokker-planck equations often lead to
incorrect results,

Theorem: Any given linear discretization of the continuous equation can be

written as p
Pi i i
i S i) + s
j k

Let

A={@eRY : S((Y el®p) + ci)e 7 =0},
k

J

Then A is a zero measure set.

* Graphs are not length spaces and many of the essential techniques cannot be used
anymore,

* The notion of random perturbation (white noise) of a Markov process on discrete
spaces is not clear.

* Nodes on graphs may have very different neighborhood structures.




Optimal Transport on Graphs

Discrete 2-Wasserstein distance

For any p°, p' € P(G), define

1
Wa.7(p”, p') = iﬂf(/ (v,0),dt)>
v Jo
where v and p satisty

dp

— +diva(pv) =0, p(0,2) = p°, p(1,2) = p".



Vector Operators on Graphs

Vector field on a graph: v = (v4;)(; jer, satisfying v;; = —vy;
Potential ® induced vector field : Vg = (®; — @) j)eE

Divergence w. r. t. p

n

divg(pv) — _(ZjEN(i) /Uijgg(p))izl
Inner product

(v,w)p = D (i yem Vijtii9i; (p)

Here Fi(p) = a%l_]:(p) and




Discrete Fokker-Planck Equations

Theorem 1

For a finite graph G = (V/, E) and a constant 8 > 0. The gradient flow of
discrete free energy

F(p) = Zzwup,pj +Zv,p, +BZP, log pi

=1 j=1
on the metric space (Po(G), Wa.x) is
W= ST bF )~ FioDs — X pilFio) — FoDs (1

JEN(I) JEN(I)

for any i € V. Here Fi(p) = & 5,7 (p) and (-)4+ = max{-,0}.

Continuous Fokker-Planck equation

pt =V - (VUp)+ BAp =V - (V(¥ + Blogp)p)



Fokker-Planck Equation and Exploring Region

In the path planning case, the region is determined by,

% = (Y (Flp,o) = Filp, 0)) 1 pucli—

keNb(j)
1
> (Fip:0) = Felp o))+ idi) (5
keNb(j)

where

Ei(p,o) = p(i) + o log p;.

p(7) is the distance to the target.

o = 0 projected gradient,
o > (0 diffusion.

Distance value is not used, only the projected gradient direction is used,



Fokker-Planck Equation and Exploring Region

A different view point:
On a generated tree, Fokker-Planck equation selects nodes

(a) The Evolved Region (b) The Generated Graph



General Control Problems

For a complete control system (€2,U, f) that is completely controllable in
time T, with U being a compact set of R” and f being a Lipschitz
function, we let (€2, g) be a d dimensional compact Riemannian manifold.
There exists a distance function d(-,-) induced by g(-,-). We want to find

uc U T) such that

v(t) = F(v(t), u(t)),
Y(0) = x0,¥(T) = xr,
¢(v(t)) > 0 for all t € [0, T],

(y(t),7,t) >0 for all t € [0, T],

where

0 [ Y(x) ifd(x,v(7)) < R forsome T <t
vt 7) = { 0 otherwise



An Example, Path Planning on a Sphere




Thank you for your attention!



