Path Planning in Unknown Environment by Optimal Transport on Graph

Haomin Zhou
School of Mathematics, Georgia Tech

Collaborators: Magnus Egerstedt (ECE, GT), Haoyan Zhai (Math, GT)

Partially Supported by NSF, ONR

Optimal Path In Dynamical Environment

Method of Evolving Junctions (MEJ) (Automatica 2017, IJRR 2017, with Chow-Egerstedt-Li-Lu,).

Multi-Agent System

The robots have limited detection ranges.
Path generated by Intermittent Diffusion (with Egerstedt-Frederick).

Path Exploration in Unknown Environment

The robot has a limited detection range.

Path Exploration in Unknown Environment

The robots have limited detection ranges.

Outline

- Path planning in unknown environments
- Optimal transport on finite graphs
- General control with unknown constraints

Path Planning in Unknown Environments

Problem: Find a continuous curve $\gamma(t)$ in $\Omega \subset \mathbb{R}^{d}$ such that

$$
\begin{aligned}
& \gamma(0)=x_{0}, \gamma(T)=x_{f}, \\
& \phi(\gamma(t)) \geq 0 \text { for all } t \in[0, T] \\
& \hat{\psi}(\gamma(t), \gamma, t) \geq 0 \text { for all } t \in[0, T]
\end{aligned}
$$

$\phi(x) \leq 0$ are the known constraints, $\psi(x) \leq 0$ are the unknown obstacles.

$$
\hat{\psi}(x, t, \gamma)= \begin{cases}\psi(x) & \text { if } d(x, \gamma(\tau)) \leq R \text { for some } \tau \leq t \\ 0 & \text { otherwise }\end{cases}
$$

Constraints are expressed in terms of level set functions.

Challenges

- Local traps and replanning,
- Narrow pathways,
- Collisions,
- Communications,
- Computational cost in higher dimensions.

Existing methods

- Bug family: Bug0, Bug1, Bug2, TangentBug, DistBug, ...
- Probabilistic Road Map (PRM),
- Rapid-growing Random Tree (RRT), RRT* (dynamical version),
- Artificial Potential Field (APF),
- Graph based methods (Dijkstra style): A*, D, D*, focus-D*, D*lite and more,
- Genetic algorithm, Neural network, fuzzy logic, fast marching tree, and many more.

The convergence for many of the methods, if exists, is asymptotic.

Our Algorithm

Idea: potential guided, tree based 2-layer iterations.

3 main steps:

- Tree generating,
- Path finding,
- Environment updating.

Potential is used to ensure convergence, and Trees are used to control the computation cost in high dimensions.

Properties of Our Algorithm

Proposition

There exists a unique path from initial to target configurations over the generated graph G. And if the path is denoted by $\left\{x_{i}\right\}_{i=0}^{q} \subset V$ with $x_{0} \rightarrow x_{1} \rightarrow \cdots \rightarrow x_{q}=x_{f}$, where x_{i} is the ancestor of x_{i+1}.

We use back tracing to find the path:

Convergence Analysis

Theorem

Assuming that

$$
\sup _{\gamma \in \Gamma} \inf _{t \in[0, T]} \sup _{r \geq 0}\{r: B(\gamma(t), r) \cap \mathcal{O}=\emptyset\}=L>0
$$

and

$$
l<\frac{2 L}{\sqrt{n}}
$$

where n is the dimension of Ω and I is the step size of the graph generation, the graph generation terminates in finite iterations. The generated graph $G=(V, E)$ is connected and has a finite number of vertices $|V|<\infty$ with $x_{s}, x_{t} \in V$.

The tree generating iteration stops in finite steps.

Convergence Analysis

Theorem

Let $\left\{\gamma_{i}\right\}_{i=1}^{m}$ be the paths produced by the algorithm with $\left\{T_{i}\right\}_{i=1}^{m}$ being the stopping time set. If we use the same assumptions in the previous theorem and

$$
\sup _{i} \inf _{\epsilon}\left\{\epsilon: B\left(\gamma_{i}\left(T_{i}\right), \epsilon\right) \cap \mathcal{O}_{c}^{T_{i}} \neq \emptyset\right\}=q<R,
$$

holds, then $m<\infty$.

The outer iteration stops in finite steps.
Our algorithm stops in finite steps.

Examples

A 10-robot (20 dimensional) example. The entire computation is within 1 minute in Matlab on a laptop.

Examples

A 3-robot example. Most area is not explored.

Summary of the Properties

- The algorithm is deterministic, stops in finite steps,
- Guarantees to find a feasible path if there exists one,
- If the algorithm stops without returning a path, there isn't one that can be identified by the step size.
- The growing rate for the tree is linear, not exponential, w.r.t. the dimension of the configuration space,
- Explores only a limited part of the configuration space.

The method is inspired by optimal transport on trees with intermittent diffusion.

Limited Exploration Region

Theorem

Given any known environment, the generated graph G is bounded by \mathcal{R}, produced by evolution of Fokker-Planck equation in the same environment:

$$
G \subset \bigcup_{x \in \mathcal{R}} \operatorname{Box}(x, I) .
$$

The tree generation contains 2 phases: projected gradient and diffusion.

Limited Exploration Region

Theorem

Assuming that the robots only stop on node points with assumptions in previous theorems and $R>L$, the complete path γ generated by the algorithm in the unknown environment satisfies

$$
\gamma \subset \bigcup_{x \in \mathcal{R}} \operatorname{Box}(x, I)
$$

where \mathcal{R} is produced with the full knowledge of the environment.

The evolution of Fokker-Planck equation on graph has intermittent diffusion (diffusion coefficient is turned on-and-off).

Optimal Transport

- Optimal Transport: Monge (I78I), Kantorovich (I942), Otto, Kinderlehrer, Villani, McCann, Carlen, Lott, Strum, Gangbo, Jordan, Evans, Brenier, Benamou, Caffarelli, Figalli, and many many more,
-Related to linear programming, manifold learning, image processing, game theory, ...

Benamou-Brenier Formula

$$
W_{2}\left(\rho^{0}, \rho^{1}\right)=\inf _{v}\left(\int_{0}^{1} \int_{\mathbb{R}^{N}} v(t, x)^{2} \rho(t, x) d x d t\right)^{\frac{1}{2}}
$$

s.t.

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot(v \rho)=0, \quad \rho(0, x)=\rho^{0}, \quad \rho(1, x)=\rho^{1} .
$$

2-Wasserstein distance: the minimal cost, with respect to the square of Euclidean distance, to move from ρ^{0} to ρ^{1}.

Fokker-Planck Equations

-Randomly perturbed gradient system:

$$
d x=-\nabla \Psi(x) d t+\sqrt{2 \beta} d W_{t}, \quad x \in \mathbb{R}^{N}
$$

- Time evolution of the probability density function, the Fokker-Planck equation:

$$
\rho_{t}(x, t)=\nabla \cdot(\nabla \Psi(x) \rho(x, t))+\beta \Delta \rho(x, t)
$$

- Invariant distribution at steady state -- Gibbs distribution:

$$
\rho^{*}(x)=\frac{1}{K} e^{-\Psi(x) / \beta} \quad K=\int_{\mathbb{R}^{N}} e^{-\Psi(x) / \beta} \mathrm{d} x
$$

Free Energy and Fokker-Planck Equations

-Free energy

$$
F(\rho)=U(\rho)-\beta S(\rho)
$$

-Potential

$$
U(\rho)=\int_{\mathbb{R}^{N}} \Psi(x) \rho(x) \mathrm{d} x
$$

-Gibbs-Boltzmann Entropy

$$
S(\rho)=-\int_{\mathbb{R}^{N}} \rho(x) \log \rho(x) \mathrm{d} x
$$

-Fokker-Planck equation is the gradient flow of the free energy under 2-Wasserstein metric on the manifold of probability space.

- Gibbs distribution is the global attractor of the gradient system.

Optimal Transport

2 - Wasserstein
Distance
$F(\rho)=U(\rho)-\beta S(\rho)$
Free Energy
$d x=-\nabla \Psi(x) d t+\sqrt{2 \beta} d W_{t}$
SDE

$$
\rho_{t}=\nabla \cdot(\nabla \Psi \rho)+\beta \Delta \rho=\nabla \cdot(\nabla(\Psi+\beta \log \rho) \rho)
$$

Fokker-Planck Equation

Optimal Transport on Finite graphs

- Our Goal: establish optimal transport on graphs with finite vertices.
- Why on graphs: Physical space (number of sites or states) is finite, not necessary from a spatial discretization such as a lattice.
- Applications: game theory, RNA folding, logistic, chemical reactions, machine learning, Markov networks, numerical schemes, ...
- Mathematics: Graph theory, Mass transport, Dynamical systems, Stochastic Processes, PDE's, ...
- Many Recent Developments: Erbar, Mielke, Mass, Gigli, Ollivier, Villani, Tetali, Fathi, Qian, Carlen, ...

Basic Set-ups

Graph with finite vertices

$$
G=(V, E), \quad V=\{1, \cdots, n\}, \quad E \text { is the edge set. }
$$

Probability set

$$
\mathcal{P}(G)=\left\{\left(\rho_{i}\right)_{i=1}^{n} \mid \sum_{i=1}^{n} \rho_{i}=1, \rho_{i} \geq 0\right\} .
$$

Discrete free energy

$$
\mathcal{F}(\rho)=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j} \rho_{i} \rho_{j}+\sum_{i=1}^{n} v_{i} \rho_{i}+\beta \sum_{i=1}^{n} \rho_{i} \log \rho_{i} .
$$

Challenges

- Common discretizations of continuous fokker-planck equations often lead to incorrect results,

Theorem: Any given linear discretization of the continuous equation can be written as

$$
\frac{d \rho_{i}}{d t}=\sum_{j}\left(\left(\sum_{k} e_{j k}^{i} \Phi_{k}\right)+c_{j}^{i}\right) \rho_{j} .
$$

Let

$$
A=\left\{\Phi \in \mathbb{R}^{N}: \sum_{j}\left(\left(\sum_{k} e_{j k}^{i} \Phi_{k}\right)+c_{j}^{i}\right) e^{-\frac{\Phi_{j}}{\beta}}=0\right\} .
$$

Then A is a zero measure set.

- Graphs are not length spaces and many of the essential techniques cannot be used anymore,
- The notion of random perturbation (white noise) of a Markov process on discrete spaces is not clear.
- Nodes on graphs may have very different neighborhood structures.

Optimal Transport on Graphs

Discrete 2-Wasserstein distance

For any $\rho^{0}, \rho^{1} \in \mathcal{P}(G)$, define

$$
W_{2 ; \mathcal{F}}\left(\rho^{0}, \rho^{1}\right)=\inf _{v}\left(\int_{0}^{1}(v, v)_{\rho} d t\right)^{\frac{1}{2}}
$$

where v and ρ satisfy

$$
\frac{d \rho}{d t}+\operatorname{div}_{G}(\rho v)=0, \quad \rho(0, x)=\rho^{0}, \rho(1, x)=\rho^{1} .
$$

Vector Operators on Graphs

Vector field on a graph: $v=\left(v_{i j}\right)_{(i, j) \in E}$, satisfying $v_{i j}=-v_{j i}$
Potential Φ induced vector field : $\nabla_{G}=\left(\Phi_{i}-\Phi_{j}\right)_{(i, j) \in E}$
Divergence w. r. t. ρ

$$
\operatorname{div}_{G}(\rho v)=-\left(\sum_{j \in N(i)} v_{i j} g_{i j}^{F}(\rho)\right)_{i=1}^{n}
$$

Inner product

$$
(v, u)_{\rho}=\sum_{(i, j) \in E} v_{i j} u_{i j} g_{i j}^{F}(\rho)
$$

Here $F_{i}(\rho)=\frac{\partial}{\partial \rho_{i}} \mathcal{F}(\rho)$ and

$$
g_{i j}^{F}(\rho)= \begin{cases}\rho_{i} & \text { if } F_{i}(\rho)>F_{j}(\rho), j \in N(i) ; \\ \rho_{j} & \text { if } F_{i}(\rho)<F_{j}(\rho), j \in N(i) ; \\ \frac{\rho_{i}+\rho_{j}}{2} & \text { if } F_{i}(\rho)=F_{j}(\rho), j \in N(i)\end{cases}
$$

Discrete Fokker-Planck Equations

Theorem 1

For a finite graph $G=(V, E)$ and a constant $\beta>0$. The gradient flow of discrete free energy

$$
\mathcal{F}(\rho)=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j} \rho_{i} \rho_{j}+\sum_{i=1}^{n} v_{i} \rho_{i}+\beta \sum_{i=1}^{n} \rho_{i} \log \rho_{i}
$$

on the metric space $\left(\mathcal{P}_{\circ}(G), W_{2 ; \mathcal{F}}\right)$ is

$$
\begin{equation*}
\frac{d \rho_{i}}{d t}=\sum_{j \in N(i)} \rho_{j}\left(F_{j}(\rho)-F_{i}(\rho)\right)_{+}-\sum_{j \in N(i)} \rho_{i}\left(F_{i}(\rho)-F_{j}(\rho)\right)_{+} \tag{1}
\end{equation*}
$$

for any $i \in V$. Here $F_{i}(\rho)=\frac{\partial}{\partial \rho_{i}} \mathcal{F}(\rho)$ and $(\cdot)_{+}=\max \{\cdot, 0\}$.

Continuous Fokker-Planck equation

$$
\rho_{t}=\nabla \cdot(\nabla \Psi \rho)+\beta \Delta \rho=\nabla \cdot(\nabla(\Psi+\beta \log \rho) \rho)
$$

Fokker-Planck Equation and Exploring Region

In the path planning case, the region is determined by,

$$
\begin{aligned}
\frac{\partial \rho_{j}}{\partial t}=(& \sum_{k \in N b(j)}\left(F_{k}(\rho, \sigma)-F_{j}(\rho, \sigma)\right)_{+} \rho_{k} d_{j k}- \\
& \left.\sum_{k \in N b(j)}\left(F_{j}(\rho, \sigma)-F_{k}(\rho, \sigma)\right)_{+} \rho_{j} d_{j k}\right) \frac{1}{(\Delta x)^{2}}
\end{aligned}
$$

where

$$
\begin{aligned}
& F_{i}(\rho, \sigma)=p(i)+\sigma \log \rho_{i} \\
& p(i) \text { is the distance to the target. } \\
& \sigma=0 \text { projected gradient } \\
& \sigma>0 \text { diffusion. }
\end{aligned}
$$

Distance value is not used, only the projected gradient direction is used,

Fokker-Planck Equation and Exploring Region

A different view point:
On a generated tree, Fokker-Planck equation selects nodes

(a) The Evolved Region

(b) The Generated Graph

General Control Problems

For a complete control system (Ω, \mathcal{U}, f) that is completely controllable in time T, with \mathcal{U} being a compact set of \mathbb{R}^{n} and f being a Lipschitz function, we let (Ω, g) be a d dimensional compact Riemannian manifold. There exists a distance function $d(\cdot, \cdot)$ induced by $g(\cdot, \cdot)$. We want to find $u \in \mathcal{U}^{[0, T)}$ such that

$$
\begin{aligned}
& \dot{\gamma}(t)=f(\gamma(t), u(t)), \\
& \gamma(0)=x_{0}, \gamma(T)=x_{f}, \\
& \phi(\gamma(t)) \geq 0 \text { for all } t \in[0, T] \\
& \hat{\psi}(\gamma(t), \gamma, t) \geq 0 \text { for all } t \in[0, T],
\end{aligned}
$$

where

$$
\hat{\psi}(x, t, \gamma)= \begin{cases}\psi(x) & \text { if } d(x, \gamma(\tau)) \leq R \text { for some } \tau \leq t \\ 0 & \text { otherwise }\end{cases}
$$

An Example, Path Planning on a Sphere

Thank you for your attention!

